Line it up

You need a ruler marked in centimetres and millimetres.

- Use the ruler to draw 10 different straight lines on a piece of paper.
- Ask your child to estimate the length of each line and write the estimate on the line.
- Now give them the ruler and ask them to measure each line to the nearest millimetre.
- Ask them to write the measurement next to the estimate, and work out the difference.
- ♦ A difference of 5 millimetres or less scores 10 points. A difference of 1 centimetre or less scores 5 points.
- ♦ How close to 100 points can she get?

Guess my number

- ♦ Choose a number between 0 and 1 with one decimal place, e.g. 0.6.
- Challenge your child to ask you questions to guess your number. You
 may only answer 'Yes' or 'No'. For example, he could ask questions like
 'Is it less than a half?'
- See if he can guess your number in fewer than 5 questions.
- Now let your child choose a mystery number for you to guess.

Extend the game by choosing a number with one decimal place between 1 and 10, e.g. 3.6. You may need more questions!

Times tables

Ask your child a different times-table fact every day,

e.g. What is 6 times 8? Can you use this to work out 12 x 8?

and: What is 48 divided by 6?

Useful Websites:

- mathsframe.co.uk
- topmarks.co.uk
- bbc.co.uk/bitesize/ks2/maths
- ictgames.com
- crickweb.co.uk

Maths targets for pupils in Year 5

A booklet for parents

Help your child with mathematics

Targets - Year 5

By the end of the Autumn Term most children should be able to...

1. read, write, order and compare numbers to at least 1 000 000 and determine the value of each digit

```
1030456 > 706358 (> is greater than)
708432 < 2034678 (< is less than)
```

2. count forwards or backwards in steps of powers of 10 for any given number up to 1 000 000

```
10^{0} = 1

10^{1} = 10

10^{2} = 10 \times 10 = 100

10^{3} = 10 \times 10 \times 10 = 1000 etc
```

3. multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

```
200 \div 10 = 20 2 \times 10 = 20 200 \div 100 = 2 2 \times 100 = 200 2 \times 1000 = 2000 2 \times 1000 = 2000
```

4. read and write decimal numbers as fractions

```
for example, 0.71 = 71/100
```

5. add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)

76134	5 ³ 4 ¹ 3 ¹ 2 ¹ 1
+41785	-23718
80919	30603

6. add and subtract numbers mentally with increasingly large numbers

$$25 + 29 =$$
 $58 - 39 =$

7. identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers

A multiple is a result you get when you multiple one whole number with another. e.g. 2, 4, 6, 8, 10 are multiples of 2. A factor of a number is a whole number that divides exactly into it. E.g. you can divide 12 by 3. 3 and 4 are factors of 12.

8. multiply numbers up to 4 digits by a one-digit number using a formal written method

```
7_{5}6_{5}5_{8}9_{1}2
x 9
689328
```

About the targets

These targets show some of the things your child should be able to do by the end of Year 5.

A target may be harder than it seems, e.g. a child may subtract 3994 from 9007 by writing it in columns, without realising it is quicker to count on from 3994 up to 9007 in his / her head.

Here are some examples of activities children will be expected to do. You could help your child by working on these at home:

- I can explain and represent how I know that 71.7 m is greater than 71.57 m, explain why it is easy to subtract 0.7 m from 71.7 m and why rounding both numbers to the nearest metre gives the same result, suggesting other numbers that would also round to 72 m.
- -I can explain and represent the relationship between 71.7 and 717.
- -I can choose pairs of numbers from a table of data showing distances between major cities in the world and explain and justify my decisions for: pairs of numbers where I would use a mental method to find the difference or total; and pairs of numbers where I would use a written method to find the difference or total.
- I can explain and represent why the solution to $83 \div 6$ is different in the two contexts: "83 people need to travel in taxis that each carry 6 people, how many taxis do you need?" and "83 eggs have been collected, how many boxes of 6 can be filled?"

